编程练习
题目:输入一棵二叉树,判断该二叉树是否是平衡二叉树。
思路:平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。由定义可知可以用递归思想,并且上一道题中判断二叉树的深度的方法也可以拿过来用。
java代码如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58public class IsBalanced_Tree {
int leftdp=0;
int rightdp=0;
public boolean IsBalanced_Solution(TreeNode root) {
if(root==null) {
return true;
}
boolean flag=false;
boolean left=IsBalanced_Solution(root.left);
boolean right=IsBalanced_Solution(root.left);
if(left) {
leftdp=TreeDepth(root.left);
}
if(right) {
rightdp=TreeDepth(root.right);
}
if(leftdp-rightdp==1 || leftdp-rightdp==-1 || leftdp==rightdp) {
flag=true;
}
return flag;
}
public int TreeDepth(TreeNode root) {
if(root==null) {
return 0;
}
int left=TreeDepth(root.left);
int right=TreeDepth(root.right);
int max=0;
if(left>right) {
max=left;
}else {
max=right;
}
return max+1;
}
public static void main(String[] args) {
TreeNode root=new TreeNode(0);
TreeNode node1=new TreeNode(1);
TreeNode node2=new TreeNode(2);
TreeNode node3=new TreeNode(3);
TreeNode node4=new TreeNode(4);
TreeNode node5=new TreeNode(5);
TreeNode node6=new TreeNode(6);
root.left=node1;
root.right=null;
node1.left=node3;
node1.right=node4;
node2.left=node5;
node2.right=node6;
IsBalanced_Tree bt=new IsBalanced_Tree();
System.out.println(bt.IsBalanced_Solution(root));
}
}